ОБУЧЕНИЕ ДЕТЕЙ ИЗМЕРЕНИЮ
Главная страница =>библиотека=>оглавление
В начале учебного года у детей закрепляют умение выделять длину, ширину, высоту предметов, устанавливать размерные от-- ношения между ними. Дети выполняют упражнения на сравнение предметов, отличающихся 1, 2, 3 измерениями.Полезно чередовать упражнения в сравнении предметов по тем видам протяженности, которые дети чаще путают: по длине и ширине, по длине и толщине, по высоте и глубине. Например: «Какая планка (дощечка) длиннее? Какая уже? Какая шире? Какая тоньше?» Дети должны научиться оценивать размер предметов с точки зрения трех измерений: одна коробка длиннее, но уже и ниже, другая — короче, но шире и выше. Один карандаш толстый, но короткий, другой — тонкий, но длинный и т. п.
Этой цели служат упражнения в построении ряда или в группировке предметов по тому или иному признаку. Обычно для группировки используют от 6 до 10 предметов (коробки разной длины, ширины, высоты и др.). Дети помещают в одну группу предметы, например, равные по высоте, отвлекаясь от других измерений.
В подготовительной к школе группе полезно частные, конкретные характеристики величин: «длиннее», «короче», «шире», «уже» и др.— подвести к абстрактным определениям: «больше», «меньше». На одном из занятий, установив, какой из 2 предметов длиннее (короче), педагог спрашивает: «Что значит длиннее?» Решают: «Это значит больше по длине».— «Что значит короче?» — «Это значит меньше по длине». Сравнивают предметы, отличающиеся шириной (высотой, толщиной), и делают соответствующие выводы. Наконец, сравнивают предметы, отличающиеся по объему в целом, устанавливают, когда предмет больше и по длине, и по ширине, и по высоте, о нем говорят, что он больше другого, а о предмете, меньшем по длине, ширине и высоте,— что он меньше. Дети 6—7 лет переходят от непосредственной оценки величин к их более точной количественной характеристике, которую получают путем измерения.
В процессе измерения единица измерения (мерка) как бы дробит измеряемую величину (длину, объем) на части, каждая из которых ей равна. Число, полученное в результате измерения, выражает отношение целого к его части.
Измерение позволяет детям понять относительность числа, его зависимость от избранной меры. Измерению длины, ширины, высоты, объема жидких и сыпучих тел следует посвятить 10—12 специальных занятий. Дети должны понять, для чего нужно измерение. С этой целью важно поставить их перед необходимостью измерения. Например, воспитатель предлагает выбрать или изготовить планку, равную длине стола, или определить, на сколько один предмет длиннее (выше и т. п.) другого. Можно выяснить, поместится ли шкаф в нише. В данном случае предметы нельзя приложить друг к другу, их надо измерить, а затем сравнить между собой результаты измерения. «Что же мы будем измерять?» — спрашивает педагог, стремясь выделить объект измерения.
Когда позднее дети научатся определять объем жидких и сыпучих тел, они смогут решить, в каком пакете больше крупы или в каком сосуде (графине или кувшине) больше воды.
Измерение — сложная деятельность, поэтому в обучении детей этому умению нужна определенная последовательность.
Вначале детей учат измерять длину, ширину, высоту предметов. Воспитатель создает ситуацию, заставляющую прибегнуть к измерению. Например, он спрашивает: «Поместится ли полочка в простенок между окнами?» (Решают измерить длину полочки и расстояние между окнами, а потом сравнить результаты.) Отвечая на вопросы: «Что мы будем измерять? Чем же мы будем измерять длину полочки?» — дети выделяют объект измерения и мерку.
Примечание. У педагога на столе заранее разложены разные предметы, которые могут служить мерками: кусок веревки, тесьма, картонная полоска, палочки и пр. Важно с самого начала подчеркнуть условность выбора мерки.
Вместе с детьми педагог. выбирает картонную полоску, так как ею удобнее будет измерять. «То, чем измеряют, вызывается меркой,— говорит педагог и спрашивает: — Что же нам будет служить меркой? Сейчас мы посмотрим, сколько раз полоска уложится по длине полочки». Далее он знакомит детей с правилами измерения линейных величин: начинать надо точно от конца, уложить полоску-мерку прямо. «Сколько раз я отложила полоску? Можно ли сказать, сколько раз она уложилась по длине полочки? Да, нельзя сказать: мы пока измерили только часть длины полочки, а вот эту часть еще не измерили. (Показывает.) Надо сделать отметку там, где конец полоски, и вновь ее уложить точно от отметки. Полоску надо укладывать строго по прямой линии. Теперь измерена длина полочки? Нет. Значит, надо еще раз положить полоску, откладывать ее до тех пор, пока не будет измерена вся длина. Сколько раз полоска уложилась по длине полочки? (Дети вместе с педагогом считают отрезки.) Чему же равна длина полочки?»
Необходимо показать, что нарушение любого правила измерения (начали измерение не точно от края, мерку укладывали не по прямой линии и пр.) ведет к ошибочному результату.
Обучая детей способам определения объема жидких и сыпучих тел, педагог также учит сначала устанавливать, что будет измерено (например, сколько воды в графине), что необходимо для измерения (выбрать подходящую мерку), как надо заполнить мерку, до каких пор надо продолжать измерение.
Вначале при измерении длин и объемов в соответствии с каждой меркой («чтобы не забыть, сколько их отмерено») откладываются какие-либо предметы-метки. Метки показывают, сколько раз отмерена длина, равная мерке. Сравнение результатов измерения производят как поштучным сопоставлением меток, так и их подсчетом и сравнением чисел.
Меряя крупу ложками, дети раскладывают ее отдельными кучками, равными мерке (ложке и др.); определяя объем воды, наливают ее в отдельные стаканы и затем подсчитывают общее количество.
На втором занятии дети ссыпают крупу в одну посуду, а воду выливают в один сосуд, условно обозначая каждую мерку предметом.
В качестве эквивалентов-меток используют разнообразные предметы: пуговицы, колечки, геометрические фигуры, детские счеты, на которых по ходу измерения откладывают косточки.
Большое внимание уделяют формированию правильных навыков измерения. Педагог постоянно следит, чтобы, измеряя длину (ширину, высоту) предметов,"дети укладывали мерку по прямой линии, точно отмечали место, на которое пришелся конец мерки, и в следующий раз укладывали ее точно от этой метки, чтобы величина была измерена полностью («От одного конца до другого»). Ребят убеждают в том, как важно измерять точно и аккуратно, показывают, что неточные действия приводят к ошибочному результату. Педагог подчеркивает, что при измерении количества крупы и других сыпучих тел мерку (ложку, чашку) нужно наполнять точно до края, но не насыпать с верхом, а воду наливать до определенного уровня, иначе она будет выливаться из посуды. Необходимо постоянно контролировать точность заполнения меры (ложки, стакана и пр.).
Упражнения в измерении линейных величин и объемов жидких и сыпучих тел необходимо чередовать, при этом в качестве мерок использовать разнообразные предметы: полоски бумаги, веревки, ленты, ложки, чашки, стаканы, банки и пр.
Полезно сравнивать разные свойства одних и тех же предметов. Например, предложить детям определить, в каком из 2 кувшинов уровень воды выше и в каком из них больше воды при условии, что кувшины разной ширины. Выясняют, чем можно измерить высоту уровня воды, а чем — ее объем. Почему нельзя сказать, где больше воды, измерив только высоту ее уровня? Дети убеждаются, что сравнивать можно только те результаты, которые получились при измерении мерками одного вида.
Дети должны усвоить, что, во-первых, для измерения разного рода величин нужны разные мерки, а во-вторых, условные мерки для каждого вида величин могут быть разными (стакан, чашка, банка и др.). Выбирают мерки, которыми удобно действовать в каждом конкретном случае. По окончании измерения педагог ставит вопросы: «Что измеряли? Чем измеряли? Что получилось в результате?» Дети приучаются согласовывать число с названием мерки. («В графине 5 стаканов воды, на тарелке 5 ложек крупы» и т. п.)
Варьируя вопросы, надо постоянно подчеркивать, что обозна чает число, полученное в результате измерения: «Что значит, что длина ленты равна 4 меркам? Что обозначает число 4, которое мы получили, измеряя длину стола? Чтобы выбрать до- " щечку такой же длины, сколько раз надо уложить мерку?» Важно подвести детей к выводу: количество мерок определяет размер предметов. +
Если вначале предметы подбирают с расчетом, чтобы мерка уложилась на измеряемом предмете целое число раз (без остатка), то в дальнейшем дети могут измерять любые предметы, находящиеся в групповой. Педагог поясняет, что мерку отсчитывают лишь тогда, когда она уложилась (заполнилась) целиком.
Если мерка полностью не уложилась (не заполнилась), то указывают на остаток.
Целесообразно подбирать такие предметы, чтобы результаты их измерения выражались смежными числами и чтобы дети имели возможность упражняться в сравнении смежных чисел и установлении разностных отношений между ними. Например, длина розовой ленты — 8 мерок, а желтой — 7 мерок. «Розовая лента длиннее желтой на 1 мерку»,— говорит ребенок. Или: «Желтая лента короче розовой на 1 мерку».— «Почему ты так думаешь?» — «Желтая лента короче розовой на 1 мерку потому, что 7 меньше 8 на 1, а 8 больше 7 на 1».
Постепенно дети научаются сразу измерять и подсчитывать количество мерок. «Раньше, измеряя, мы для памяти откладывали какой-либо предмет, теперь мы предметы откладывать не будем, а, укладывая мерки, будем сразу их считать»,— поясняет воспитатель.
Важно, чтобы упражнения в измерении основывались на решении практических задач. Например, детям можно предложить изготовить какой-либо предмет определенного размера, сравнить и уравнять размеры предметов, нарисовать или вырезать квадрат со стороной в 4 клетки, где клетка служит условной меркой, отмерить определенное количество воды для поливки растений или для аквариума, определенное количество зерна, чтобы покормить птиц.
Дети должны понять, что при измерении предметов равных размеров одной и той же меркой получают одно и то же число, а при измерении неравных предметов одной и той же меркой — разные числа. Чем больше размер предмета, тем больше получится число, а чем меньше размер предмета, тем меньше будет число.
Постепенно дошкольники усваивают прямую функциональную зависимость между размером предмета и числом единиц измерения (мерок). Не мерее важно подвести их к пониманию обратной (пропорциональной) зависимости, к пониманию того, что при равенстве размеров предметов количество мерок будет тем больше, чем меньше мерка, так как меньшая мерка уложится большее количество раз на предмете, чем большая мерка. Например, детям дают полоски равной длины, они их прикладывают одну к другой, устанавливают равенство, а затем измеряют, накладывая на них мерки разных размеров. В результате оказывается, что на одной полоске поместились 2 мерки большего размера, на второй — 3 мерки меньшего размера, а на третьей — 4 самые маленькие мерки. Дети устанавливают связь между размером мерок и их количеством и приходят к соответствующему выводу.
Полезно одному ребенку предложить, например, измерить длину стола длинной полоской, а другому — ширину стола короткой полоской. Выясняют, кто из детей отложил больше мерок и почему. «Можно ли сравнить результаты измерений? Почему нельзя их сравнить?»
Аналогичным образом равные количества крупы дети раскладывают на кучки, отмеряя их чайной, десертной и столовой ложками, а затем сравнивают количество кучек, отмеренных ложками разных размеров.
В дальнейшем чередуют задания на сравнение результатов измерения предметов разных размеров одинаковыми мерками и, наоборот, предметов одинакового размера мерками разных размеров. Каждый раз выясняют, почему получились разные числа. Дети убеждаются: сравнивать результаты можно только тогда, когда обе величины измерены одной и той же меркой.
Обобщить представления детей помогают вопросы типа: «Какая лента длиннее, если длина красной ленты — 5 мерок, а синей — б таких же мерок. Как сделать, чтобы ленты стали равными по длине? В первом мешочке 7 столовых ложек риса, а во втором — 8 столовых ложек риса. В каком мешочке больше риса? Если взять другую мерку, больше (меньше), чем эта, что станет с числом? Если ленту измерить вот этой маленькой меркой, а потом вот этой большой, когда получится большее число?»
Полезно предложить детям определить, в каком сосуде больше воды, в каком — меньше, в какой банке больше крупы и пр. Сосуды подбирают низкие и широкие, высокие и узкие, как равные, так и не равные по размеру. Чтобы правильнее ответить на вопрос, дети должны учесть размер всех 3 измерений, не ограничивая себя оценкой лишь по одному из признаков. Ребята часто ошибаются, так как ориентируются лишь на высоту уровня жидкости. Те или иные предположения проверяют путем измерения. Выясняют, что надо сделать, чтобы в обоих сосудах воды стало поровну.
Подобные упражнения, где детям приходится оценивать равные и неравные объемы при условии различий в высоте, ширине предметов, способствуют четкому дифференцированию разных видов протяженности. Дети учатся оценивать количество, опираясь на совокупность пространственных признаков объектов, осознают значение измерения для выяснения отношений величин.
Для того чтобы отделить 1 от «отдельностей», наглядно показать зависимость числа от величины избранной меры, детям предлагают измерять длину предметов, составленных из нескольких других, например измерить длину заборчика, составленного из кубиков или кирпичиков. В качестве единицы измерения используют мерку, по размерам не совпадающую с «отдельностями», т. е. больше или меньше по длине, чем кубик или кирпичик. Дают задание измерить длину предмета меркой, составленной из 2—3 предметов (2 кубиков, 2 полосок). Наконец, одну единицу измерения можно заменять другой,
го же рода, но большего или меньшего размера. Например, надо отмерить 3 столовые ложки зерна, а имеется только чайная ложка или, наоборот, надо отмерить 8 чайных ложек зерна, а имеется только столовая. Дети знают, что в 1 столовую ложку вмещается столько же, скажем, песка, сколько в 2 чайные. В первом случае, отмерив 2 чайные ложки песка, откладывают 1 метку, т. е. ведут счет столовых ложек, а во втором, отмерив 1 столовую ложку, откладывают 2 метки. Аналогичным образом можно выполнить упражнения в измерении линейных величин.
В процессе обучения измерению большое внимание уделяют также развитию глазомера детей. Ребятам предлагают определить на глаз разницу в размерах предметов: сколько раз та или иная мерка уложится по длине, ширине предмета, сколько стаканов воды в графине, сколько шагов до окна и пр. А затем дети, измеряя, проверяют точность своих определений.
В конце учебного года дети учатся составлять и решать арифметические задачи, в содержании которых находят отражение разнообразные практические действия людей, в том числе и измерение величин разного рода. Например, кто-то из детей мерил воду и выяснил, что в графине 5 стаканов воды. Сережа налил в графин еще 1 стакан. Дети придумывают задачу: «В графине было 5 стаканов воды. Сережа налил еще 1 стакан. Сколько воды стало в графине?»; «Лена измеряла ленту. Длина ленты оказалась равной 7 меркам. На бант кукле Наташа отрезала кусок, равный 2 меркам». Решая задачу, ребята находят длину остатка.
Можно предлагать им и устные задачи, связанные с измерением, отмериванием: «В пакете было 6 стаканов гречневой крупы. Мама сварила кашу, израсходовав 1 стакан. Сколько крупы осталось в пакете?» Выясняют, сколько вначале было крупы и сколько крупы израсходовано. «Больше или меньше осталось крупы в пакете после того, как мама сварила кашу?» — спрашивает воспитатель. Если дети затрудняются найти путь решения задачи, полезно использовать схемы, которые наглядно представляют соотношения величин.
Л.С. Метлина. Математика в детском саду. М.:Просвещение, 1984.